Подключение модуля nRF24L01+ к Arduino — соединяем две arduino по радиоканалу

nRF24L01 один из самых популярных беспроводных модулей для интернета вещей (IoT). Подключение модуля nRF24L01+ к Arduino позволит организовать многоканальную защищенную связь между Arduino и устройствами на расстоянии. Рассмотрим, как наладить связь между двумя или несколько плат Ардуино по радиоканалу.

Содержание

Установка библиотеки RF24

Работать с nRF24L01+ можно с помощью библиотеки RF24 — довольно популярная и удобная библиотека. Скачиваем, распаковываем и закидываем библиотеку RF24 в папку Arduino/libraries. В случае, если на момент добавления библиотеки, Arduino IDE была открытой, перезагружаем среду.

Библиотеку можно установить из самой среды следующим образом:

  1. В Arduino IDE открываем менеджер библиотек: Скетч->Подключить библиотеку->Управлять библиотеками…Подключение модуля nRF24L01+ к Arduino - Управлять библиотеками...
  2. В строке поиска вводим «RF24», находим библиотеку автора TMRh20, выбираем последнюю версию и кликаем Установить.Подключение модуля nRF24L01+ к Arduino - RF24 Установка
  3. Библиотека установлена (INSTALLED).Подключение модуля nRF24L01+ к Arduino - RF24 INSTALLED

Описание методов библиотеки RF24

begin()

Инициализация работы модуля.

Возвращает
bool — результат инициализации (true / false).

startListening()

Начать прослушивание труб, открытых для приёма данных.

stopListening()

Прекратить прослушивание труб и переключиться в режим передатчика.

available()

Проверить наличие принятых данных доступных для чтения.

Параметры
pipe_num — адрес переменной типа uint8_t в которую требуется поместить номер трубы по которой были приняты данные.
Возвращает
bool — флаг наличия принятых данных (true / false).

isAckPayloadAvailable()

Проверить передатчиком наличие данных в ответе приёмника.

Возвращает
bool — флаг наличия принятых данных от приёмника (true / false).

read()

Прочитать принятые данные.

Параметры
buf — адрес массива, строки или переменной в которую требуется поместить принятые данные.
len — количество байт занимаемое массивом, строкой или переменной в которую требуется поместить принятые данные.

write()

Отправить данные по радиоканалу.

Параметры
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить.
len — Размер отправляемых данных в байтах.
multicast — Флаг групповой передачи, установите в true если требуется отправить данные нескольким приёмникам.
Возвращает
bool — результат доставки данных приёмнику (true / false).

writeAckPayload()

Подготовить данные для ответа передатчику.

Параметры
pipe — Номер трубы передатчика которому требуется ответить данными.
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить вместе с ответом передатчику.
len — Размер отправляемых данных в байтах.

openWritingPipe()

Открыть трубу для передачи данных.

Параметры
address — Адрес трубы, состоит из 5 байт (по умолчанию) и может быть представлен числом типа uint64_t или массивом из 5 однобайтных элементов. Адрес трубы передатчика должен совпадать с одним из адресов труб приёмника.

openReadingPipe()

Открыть трубу для приёма данных.

Параметры
number — Номер трубы (число от 0 до 5).
address — Адрес трубы, состоит из 5 байт (по умолчанию) и может быть представлен числом типа uint64_t или массивом из 5 однобайтных элементов. Адрес трубы приёмника должен совпадать с адресом трубы передатчика.

closeReadingPipe()

Закрыть трубу открытую ранее для прослушивания (приёма данных).

Параметры
number — Номер трубы (число от 0 до 5), которую более не требуется прослушивать.

setChannel()

Установить радиочастотный канал связи. Номер канала определяет частоту на которой работает модуль. Каждый канал имеет шаг в 1 МГц, а каналу 0 соответствует частота 2,4 ГГц = 2400 МГц, следовательно, каналу 1 соответствует частота 2401 МГц, каналу 2 — частота 2402 МГц и т.д. до канала 125 с частотой 2525 МГц.

Параметры
channel — Номер канала, указывается числом от 0 до 125.

getChannel()

Получить номер текущего радиочастотного канала связи.

Возвращает
Номер канала, число от 0 до 125.

setDataRate()

Установить скорость передачи данных по радиоканалу.

Параметры
speed — Скорость, задаётся одной из констант: RF24_1MBPS — 1 Мбит/сек, RF24_2MBPS — 2 Мбит/сек и RF24_250KBPS — 250 Кбит/сек (только для модуля NRF24L01+PA+LNA).
Возвращает
Флаг успешной установки новой скорости (true / false).

getDataRate()

Получить текущую скорость передачи данных по радиоканалу.

Возвращает
значение одной из констант сопоставленной скорости:RF24_1MBPS — 1 Мбит/сек, RF24_2MBPS — 2 Мбит/сек и RF24_250KBPS — 250 Кбит/сек (только для модуля NRF24L01+PA+LNA).

setPALevel()

Установить уровень усиления мощности передатчика.

Параметры
level — Уровень, задаётся одной из констант:

  • RF24_PA_MIN — минимальный уровень усиления = -18 дБм.
  • RF24_PA_LOW — низкий уровень усиления = -12 дБм.
  • RF24_PA_HIGH — высокий уровень усиления = -6 дБм.
  • RF24_PA_MAX — максимальный уровень усиления = 0 дБм.

getPALevel()

Получить текущий уровень усиления мощности передатчика.

Возвращает
значение одной из констант сопоставленной мощности:RF24_PA_MIN — минимальный уровень усиления = -18 дБм.

  • RF24_PA_LOW — низкий уровень усиления = -12 дБм.
  • RF24_PA_HIGH — высокий уровень усиления = -6 дБм.
  • RF24_PA_MAX — максимальный уровень усиления = 0 дБм.
  • RF24_PA_ERROR — уровень усиления не определён.

setCRCLength()

Установить размер CRC (циклически избыточный код).

Параметры
length — Размер, задаётся одной из констант: RF24_CRC_8 — под CRC отводится 8 бит (CRC-8) или RF24_CRC_16 — под CRC отводится 16 бит (CRC-16).

getCRCLength()

Получить текущий размер CRC (циклически избыточный код).

Возвращает
значение одной из констант сопоставленной размеру CRC: RF24_CRC_8 — под CRC отводится 8 бит (CRC-8), RF24_CRC_16 — под CRC отводится 16 бит (CRC-16) или RF24_CRC_DISABLED — передача и проверка CRC отключены.

disableCRC()

Отключить передачу CRC передатчиком и проверку данных приёмником.

setPayloadSize()

Установить статичный размер блока данных пользователя в байтах.

Параметры
size — Размер блока данных пользователя в байтах.

getPayloadSize()

Получить текущий статичный размер блока данных пользователя в байтах.

Возвращает
текущий статичный размер блока данных от 0 до 32 байт.

getDynamicPayloadSize()

Получить размер блока данных в последнем принятом пакете.

Возвращает
размер данных последнего принятого пакета в байтах.

enableDynamicPayloads()

Разрешить динамически изменяемый размер блока данных для всех труб.

enableDynamicAck()

Разрешить отказываться от запроса пакетов подтверждения приёма.

enableAckPayload()

Разрешить размещать данные пользователя в пакете подтверждения приёма.

setAutoAck()

Управление автоматической отправкой пакетов подтверждения приёма данных.

Параметры
pipe — номер трубы, для которой разрешается / запрещается автоматическая отправка пакетов подтверждения приема. Указывается только на стороне приёмника. Если номер трубы на стороне приёмника не указан, то действие функции распространяется на все трубы.
enable — Флаг разрешающий автоматическую отправку пакетов подтверждения приёма данных. true — разрешить / false — запретить.

setAddressWidth()

Указать длину адресов труб в байтах.

Параметры
a_width — Размер адреса трубы в байтах, представлен числом 3, 4 или 5.

setRetries()

Указать максимальное количество попыток отправки данных и время ожидания.

Параметры
delay — целое число от 0 до 15 определяющее время ожидания подтверждения приема.
count — целое число от 1 до 15 определяющее максимальное количество попыток доставить данные передатчику.

powerDown()

Перейти в режим пониженного энергопотребления.

powerUp()

Выйти из режима пониженного энергопотребления.

isPVariant()

Проверить аппаратную совместимость модуля с функциями nRF24L01.

Возвращает
(true / false) флаг указывающий на совместимость аппаратного обеспечения модуля с функциями чипа nRF24L01+.

writeFast()

Быстро отправить данные по радиоканалу.

Параметры
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить.
len — Размер отправляемых данных в байтах.
multicast — Флаг групповой передачи, установите в true если требуется отправить данные нескольким приёмникам.
Возвращает
результат записи данных в буфер для передачи (true / false).

writeBlocking()

Быстро отправить данные по радиоканалу с указанием таймаута.

Параметры
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить.
len — Размер отправляемых данных в байтах.
timeout — Максимальное время ожидания освобождения буфера FIFO в миллисекундах.
Возвращает
результат записи данных в буфер для передачи (true / false).

startFastWrite()

Начать быструю отправку данных.

Параметры
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить.
len — Размер отправляемых данных в байтах.
multicast — Флаг групповой передачи, установите в true если требуется отправить данные нескольким приёмникам.
startTx — флаг перехода в режим TX или STANDBY-II. Если не указан, значит установлен.

startWrite()

Начать отправку данных.

Параметры
buf — Данные, адрес массива, строки или переменной, данные которой требуется отправить.
len — Размер отправляемых данных в байтах.
multicast — Флаг групповой передачи, установите в true если требуется отправить данные нескольким приёмникам.

txStandBy()

Подождать пока передаются данные и вернуть результат.

Параметры
timeout — максимальное время ожидания указывается в миллисекундах.
Возвращает
результат передачи данных из буферов FIFO в радиоканал (true / false).

rxFifoFull()

Проверить не заполнены ли все три буфера FIFO.

Возвращает
флаг указывающий на то что все буферы FIFO заполнены.

flush_tx()

Очистка буферов FIFO.

reUseTX()

Повторная отправка данных из буфера FIFO, если они там есть.

testCarrier()

Проверка наличия несущей частоты на выбранном канале (частоте).

Возвращает
наличие несущей на выбранном канале за все время его прослушивания.

testRPD()

Проверка наличия любого сигнала выше -64 дБм на выбранном канале (частоте).

Возвращает
наличие сигнала мощностью выше -64 дБм на выбранном канале за все время его прослушивания.

isValid()

Проверить используется ли модуль или выполняется отладка кода.

Возвращает
назначение редактируется (true / false).

Схема подключения nRF24L01+ к Arduino

Подключается nRF24L01+ к Arduino по шине SPI (можно использовать как аппаратную так и программную шину). Выводы модуля Vcc и GND подключаются к шине питания 3.3 В постоянного тока. Выводы модуля MISO, MOSI и SCK подключаются к одноименным выводам шины SPI на плате Arduino. Выводы SS (Slave Select) и CE (Chip Enable) назначаются при объявлении объекта библиотеки RF24 и подключаются к любым назначенным выводам Arduino.

Подключить nRF24L01+ к Arduino можно как напрямую, так и через специальный адаптер.

Подключение nRF24L01+ к Arduino напрямую

Подключение nRF24L01+ к Arduino UNO напрямую

Внимание!

  • Необходимо помнить, что модуль работает от 3.3 В и в нем нет защиты от переполюсовки, если не соблюдать два этих правила, можно сжечь модуль!
  • Для стабильной работы модуля NRF24L01+ необходимо припаять конденсатор на 10 мкФ между VCC и GND.

nRF24L01+ - электролитический конденсатор емкостью 100 мкФ

nRF24L01+ Arduino UNO/Pro Mini Arduino MEGA2560
GND GND GND
VCC 3.3V 3.3V
CE 9 9
CSN 10 53
SCK 13 52
MOSI 11 51
MISO 12 50
IRQ

Подключение nRF24L01+ к Arduino через адаптер

Адаптер nRF24L01+ Arduino UNO/Pro Mini Arduino MEGA2560
GND GND GND
VCC 5.0V 5.0V
CE 9 9
CSN 10 53
SCK 13 52
MO/MOSI 11 51
MI/MISO 12 50
IRQ

Примеры

Обмен данными между двумя платами Arduino UNO и Pro Mini через nRF24L01+

Пример 1: Проверочный скетч

Результат

Подключение модуля nRF24L01+ к Arduino - Проверочный скетч, Результат

Если после загрузки проверочного скетча увидели, в окне монитора последовательного порта, надпись «Модуль nRF24L01 подключен», значит Ваш модуль поддерживается библиотекой RF24. Если Вы увидели надпись «Неизвестный модуль», проверьте подключение модуля к Arduino. В скетче указано что вывод «CE» (Chip Enable) модуля подключается к выводу 7 Arduino, а вывод SS (Slave Select) модуля подключается к выводу 10 Arduino. При необходимости измените выводы на другие. Если модуль подключён правильно, значит он собран на чипе отличном от nRF24L01.

Пример 2: Передача данных

В функции setup() данного примера модулю задаются основные настройки:

  • по умолчанию модуль работает в качестве передатчика;
  • 0x30 канал;
  • скорость 1 Мбит/сек (RF24_1MBPS);
  • максимальная мощности (RF24_PA_MAX);
  • адрес трубы 0x0123456789LL.

На стороне приёмника нужно указать тот же номер канала, скорость передачи, мощность и адрес трубы.

Пример 3: Получение данных от одного передатчика

В коде setup() приёмника задаются такие же настройки как и передатчику (канал, скорость, мощность передатчика).

  • 0x30 канал;
  • скорость 1 Мбит/сек (RF24_1MBPS);
  • максимальная мощности (RF24_PA_MAX);
  • адрес трубы 0x0123456789LL, для приёма данных.

Чтобы включить прослушивание труб, нужно вызвать startListening(), метод переводит модуль в режим работы приёмника. Если далее вызвать stopListening(), то модуль перейдёт в режим работы передатчика.

Результат

Подключение модуля nRF24L01+ к Arduino - Приём данных, Результат

Пример 4: Передача данных с проверкой их доставки

Результат

Подключение модуля nRF24L01+ к Arduino - Передача данных с проверкой, РезультатСкетч данного примера отличается от предыдущего только кодом loop() где функция write() вызывается в условии оператора if(). Дело в том, что функция write() не только отправляет данные, но и возвращает true (если данные были доставлены) или false (если данные не доставлены). По умолчанию передача данных реализована так, что передатчик не только отправляет данные, но и запрашивает у приёмника подтверждение их получения, а приёмник получив данные и проверив CRC, возвращает передатчику пакет подтверждения приема данных. Таким образом на стороне передатчика можно контролировать факт доставки данных приёмнику.

Если не нужно определить факт доставки данных приёмнику, можете заменить write() на writeFast().

writeFast() принимает те же параметры что и write(), но возвращает не флаг доставки данных приёмнику, а флаг записи данных в буфер FIFO. Значит в большинстве случаев функция вернёт true даже до того как приёмник получит данные. Если же все три буфера FIFO заполнены, то функция writeFast() ждёт пока один из них не освободится или пока не истечёт время таймаута но и это ожидание на порядок меньше чем у функции write().

Запретить отправку пакетов подтверждения приёма можно и на стороне приёмников, вызвав у них функцию setAutoAck(false) или setAutoAck(номер_трубы, false). Но в таком случае и на стороне передатчика нужно вызвать функцию setAutoAck(false) иначе приёмник не будет понимать что ему прислал передатчик.

Пример 5: Получение данных от одного или нескольких передатчиков

Приёмнику можно задать до 6 труб функцией openReadingPipe(номер, адрес) с номерами труб от 0 до 5 и адресами труб совпадающими с адресами труб передатчиков.

Сколько труб Вы укажете, столько передатчиков будет слушать приёмник.

Методом available() осуществляется проверка получения данных. Метод возвращает true если в буфере есть принятые данные доступные для чтения. В качестве необязательного аргумента можно указать адрес переменной в которую будет помещён номер трубы по которой были приняты данные (в примере используется адрес переменной &pipe), зная номер трубы мы знаем от какого передатчика пришли данные.

Если приемник будет принимать данные только от одного передатчика, то переменную pipe можно не использовать, а метод available() можно вызвать без параметра, так как в этом случае не требуется узнавать от какого передатчика приняты данные.

Результат

Подключение модуля nRF24L01+ к Arduino - Получение данных от одного или нескольких передатчиков, Результат

Материалы

Радио модуль NRF24L01+ / PA+LNA 2.4G (Trema-модуль V2.0)
Урок 26.4 Соединяем две arduino по радиоканалу через nRF24L01+
Optimized High Speed NRF24L01+ Driver Class Documenation

Похожие записи

Комментарии 3

  • Спасибо за описание методов. Только здесь нашел.

  • В примере 4 тип данных для отправки uint8_t, а в примере 3 тип данных для приема int. Несколько неожиданно, когда принимается не совсем то что отправляется. ))

    • Да, нужно отправить/получать используя один тип данных, лучше всего использовать uint8_t, но можно использовать любой тип данных, к примеру вам нужно отправить int или double и не хотите вручную преобразовать из 4-х uint8_t в int.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *